Calculus Reference Sheet

Definition $\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm g(x)$ Derivatives Definition				$\lim_{x \to c} f(x) \times \lim_{x \to c} g(x)$	
Derivatives Definition			$(g(x)] = \frac{1}{2}$	$\lim_{x \to c} f(x) \times \lim_{x \to c} g(x)$	
Definition	d	$\frac{d}{dx}[f(x)]$	x)] = lim		
	d	$\frac{d}{dx}[f(x)]$	(1) = lim		
Rules	d		$\frac{d}{dx}[f(x)] = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
1	d	I			
Constant	$\frac{d}{dx}[c] = 0$	Single variable function		$\frac{d}{dx}[x] = 1$	
	$f(x) \pm g(x)] =$ $f(x) \pm g'(x)$	Power		$\frac{d}{dx}[x^n] = n \times x^{n-1}$ $\frac{d}{dx}[g(x)^n] =$ $n(g(x))^{n-1} \times g'(x)$	
$\int \frac{Product}{f}$	$\frac{d}{dx}[f(x) \times g(x)] = f(x) \times g'(x) + g(x) \times f'(x)$			$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2},$ $g'(x) \neq 0$	
Chain $f \circ g(f)$	$f \circ g(x) = f(g(x)) = f'(g(x)) \times g'(x)$		I	$\frac{d}{dx} [e^{g(x)}] = g'(x) \times e^{g(x)}$	
Trig functions					
$\frac{d}{dx}[\sin\theta] = \cos\theta \qquad \qquad \frac{d}{dx}[\cos\theta]$		$=-\sin\theta$	$\frac{d}{dx}[\tan\theta] = \sec^2\theta$		
$\frac{d}{dx}[\csc\theta] = -\csc\theta\cot\theta \qquad \qquad \frac{d}{dx}[\sec\theta] =$		$\sec \theta \tan \theta$	$\frac{d}{dx}[\cot\theta] = -\csc^2\theta$		
Logarithms					
$\frac{d}{dx}[e^x] = e^x$		$\frac{d}{dx}[\ln x] = \frac{1}{x}, where \ x > 0$			
$\frac{d}{dx}[a^x] = a^x \times \ln a$		$\frac{d}{dx}[\log_a x] = \frac{1}{x(\ln a)}$			
Trigonometry					
Reciprocal identities cot x	$= \frac{1}{\tan x} = \frac{\cos x}{\sin x}$			$cos^{2}\theta + sin^{2}\theta = 1$ $1 + tan^{2}x = sec^{2}x$ $1 + cot^{2}x = csc^{2}x$	

Copyright © 2022 mathreferencesheets.com. Find more reference sheets like this one at mathreferencesheets.com.